Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 1: dilute acid.

Identifieur interne : 002796 ( Main/Exploration ); précédent : 002795; suivant : 002797

Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 1: dilute acid.

Auteurs : Xiadi Gao [États-Unis] ; Rajeev Kumar ; Jaclyn D. Demartini ; Hongjia Li ; Charles E. Wyman

Source :

RBID : pubmed:23055338

Descripteurs français

English descriptors

Abstract

Because conventional approaches for evaluating sugar release from the coupled operations of pretreatment and enzymatic hydrolysis are extremely time and material intensive, high throughput (HT) pretreatment and enzymatic hydrolysis systems have become vital for screening large numbers of lignocellulosic biomass samples to identify feedstocks and/or processing conditions that significantly improve performance and lower costs. Because dilute acid pretreatment offers many important advantages in rendering biomass highly susceptible to subsequent enzymatic hydrolysis, a high throughput pretreatment and co-hydrolysis (HTPH) approach was extended to employ dilute acid as a tool to screen for enhanced performance. First, a single-step neutralization and buffering method was developed to allow effective enzymatic hydrolysis of the whole pretreated slurry. Switchgrass and poplar were then pretreated with 0.5% and 1% acid loadings at a 5% solids concentration, the resulting slurry conditioned with the buffering approach, and the entire mixture enzymatically hydrolyzed. The resulting sugar yields demonstrated that single-step neutralizing and buffering was capable of adjusting the pH as needed for enzymatic saccharification, as well as overcoming enzyme inhibition by compounds released in pretreatment. In addition, the effects of pretreatment conditions and biomass types on susceptibility of pretreated substrates to enzymatic conversion were clearly discernible, demonstrating the method to be a useful extension of HTPH systems.

DOI: 10.1002/bit.24751
PubMed: 23055338


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 1: dilute acid.</title>
<author>
<name sortKey="Gao, Xiadi" sort="Gao, Xiadi" uniqKey="Gao X" first="Xiadi" last="Gao">Xiadi Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521</wicri:regionArea>
<wicri:noRegion>California 92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
</author>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
</author>
<author>
<name sortKey="Li, Hongjia" sort="Li, Hongjia" uniqKey="Li H" first="Hongjia" last="Li">Hongjia Li</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23055338</idno>
<idno type="pmid">23055338</idno>
<idno type="doi">10.1002/bit.24751</idno>
<idno type="wicri:Area/Main/Corpus">002856</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002856</idno>
<idno type="wicri:Area/Main/Curation">002856</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002856</idno>
<idno type="wicri:Area/Main/Exploration">002856</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 1: dilute acid.</title>
<author>
<name sortKey="Gao, Xiadi" sort="Gao, Xiadi" uniqKey="Gao X" first="Xiadi" last="Gao">Xiadi Gao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521</wicri:regionArea>
<wicri:noRegion>California 92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
</author>
<author>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
</author>
<author>
<name sortKey="Li, Hongjia" sort="Li, Hongjia" uniqKey="Li H" first="Hongjia" last="Li">Hongjia Li</name>
</author>
<author>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology and bioengineering</title>
<idno type="eISSN">1097-0290</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acids (metabolism)</term>
<term>Biomass (MeSH)</term>
<term>Biotechnology (methods)</term>
<term>High-Throughput Screening Assays (methods)</term>
<term>Hydrolysis (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Panicum (drug effects)</term>
<term>Populus (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Biotechnologie (méthodes)</term>
<term>Hydrolyse (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Panicum (effets des médicaments et des substances chimiques)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Tests de criblage à haut débit (méthodes)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acids</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Panicum</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Panicum</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biotechnology</term>
<term>High-Throughput Screening Assays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides</term>
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biotechnologie</term>
<term>Tests de criblage à haut débit</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Hydrolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Hydrolyse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Because conventional approaches for evaluating sugar release from the coupled operations of pretreatment and enzymatic hydrolysis are extremely time and material intensive, high throughput (HT) pretreatment and enzymatic hydrolysis systems have become vital for screening large numbers of lignocellulosic biomass samples to identify feedstocks and/or processing conditions that significantly improve performance and lower costs. Because dilute acid pretreatment offers many important advantages in rendering biomass highly susceptible to subsequent enzymatic hydrolysis, a high throughput pretreatment and co-hydrolysis (HTPH) approach was extended to employ dilute acid as a tool to screen for enhanced performance. First, a single-step neutralization and buffering method was developed to allow effective enzymatic hydrolysis of the whole pretreated slurry. Switchgrass and poplar were then pretreated with 0.5% and 1% acid loadings at a 5% solids concentration, the resulting slurry conditioned with the buffering approach, and the entire mixture enzymatically hydrolyzed. The resulting sugar yields demonstrated that single-step neutralizing and buffering was capable of adjusting the pH as needed for enzymatic saccharification, as well as overcoming enzyme inhibition by compounds released in pretreatment. In addition, the effects of pretreatment conditions and biomass types on susceptibility of pretreated substrates to enzymatic conversion were clearly discernible, demonstrating the method to be a useful extension of HTPH systems.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23055338</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>01</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-0290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Biotechnology and bioengineering</Title>
<ISOAbbreviation>Biotechnol Bioeng</ISOAbbreviation>
</Journal>
<ArticleTitle>Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 1: dilute acid.</ArticleTitle>
<Pagination>
<MedlinePgn>754-62</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/bit.24751</ELocationID>
<Abstract>
<AbstractText>Because conventional approaches for evaluating sugar release from the coupled operations of pretreatment and enzymatic hydrolysis are extremely time and material intensive, high throughput (HT) pretreatment and enzymatic hydrolysis systems have become vital for screening large numbers of lignocellulosic biomass samples to identify feedstocks and/or processing conditions that significantly improve performance and lower costs. Because dilute acid pretreatment offers many important advantages in rendering biomass highly susceptible to subsequent enzymatic hydrolysis, a high throughput pretreatment and co-hydrolysis (HTPH) approach was extended to employ dilute acid as a tool to screen for enhanced performance. First, a single-step neutralization and buffering method was developed to allow effective enzymatic hydrolysis of the whole pretreated slurry. Switchgrass and poplar were then pretreated with 0.5% and 1% acid loadings at a 5% solids concentration, the resulting slurry conditioned with the buffering approach, and the entire mixture enzymatically hydrolyzed. The resulting sugar yields demonstrated that single-step neutralizing and buffering was capable of adjusting the pH as needed for enzymatic saccharification, as well as overcoming enzyme inhibition by compounds released in pretreatment. In addition, the effects of pretreatment conditions and biomass types on susceptibility of pretreated substrates to enzymatic conversion were clearly discernible, demonstrating the method to be a useful extension of HTPH systems.</AbstractText>
<CopyrightInformation>Copyright © 2012 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Xiadi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Rajeev</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>DeMartini</LastName>
<ForeName>Jaclyn D</ForeName>
<Initials>JD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Hongjia</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wyman</LastName>
<ForeName>Charles E</ForeName>
<Initials>CE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Bioeng</MedlineTA>
<NlmUniqueID>7502021</NlmUniqueID>
<ISSNLinking>0006-3592</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000143">Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000143" MajorTopicYN="N">Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001709" MajorTopicYN="N">Biotechnology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057166" MajorTopicYN="N">High-Throughput Screening Assays</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008897" MajorTopicYN="N">Panicum</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>09</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23055338</ArticleId>
<ArticleId IdType="doi">10.1002/bit.24751</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Demartini, Jaclyn D" sort="Demartini, Jaclyn D" uniqKey="Demartini J" first="Jaclyn D" last="Demartini">Jaclyn D. Demartini</name>
<name sortKey="Kumar, Rajeev" sort="Kumar, Rajeev" uniqKey="Kumar R" first="Rajeev" last="Kumar">Rajeev Kumar</name>
<name sortKey="Li, Hongjia" sort="Li, Hongjia" uniqKey="Li H" first="Hongjia" last="Li">Hongjia Li</name>
<name sortKey="Wyman, Charles E" sort="Wyman, Charles E" uniqKey="Wyman C" first="Charles E" last="Wyman">Charles E. Wyman</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Gao, Xiadi" sort="Gao, Xiadi" uniqKey="Gao X" first="Xiadi" last="Gao">Xiadi Gao</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002796 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002796 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23055338
   |texte=   Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 1: dilute acid.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23055338" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020